Theta rhythm of hippocampal CA1 neuron activity: gating by GABAergic synaptic depolarization.

نویسندگان

  • M K Sun
  • W Q Zhao
  • T J Nelson
  • D L Alkon
چکیده

Information processing and memory consolidation during exploratory behavior require synchronized activity known as hippocampal theta (theta) rhythm. While it is well established that the theta activity depends on cholinergic inputs from the medial septum/vertical limb of the diagonal band nucleus (MS/DBv) and theta discharges of GABAergic interneurons, and can be induced with cholinergic receptor agonists, it is not clear how the increased excitation of pyramidal cells could occur with increased discharges of GABAergic interneurons during theta waves. Here, we show that the characteristic theta activity in adult rat hippocampal CA1 pyramidal cells is associated with GABAergic postsynaptic depolarization and a shift of the reversal potential from Cl(-) toward HCO(3)(-) (whose ionic gradient is regulated by carbonic anhydrase). The theta activity was abolished by GABA(A) receptor antagonists and carbonic anhydrase inhibitors, but largely unaffected by blocking glutamate receptors. Carbonic anhydrase inhibition also impaired spatial learning in a water maze without affecting other sensory/locomotor behaviors. Thus HCO(3)(-)-mediated signaling, as regulated by carbonic anhydrase, through reversed polarity of GABAergic postsynaptic responses is implicated in both theta and memory consolidation in rat spatial maze learning. We suggest that this mechanism may be important for the phase forward shift of the place cell discharges for each theta cycle during the animal's traversal of the place field for that cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials.

Theta frequency field oscillation reflects synchronized synaptic potentials that entrain the discharge of neuronal populations within the approximately 100-200 ms range. The cellular-synaptic generation of theta activity in the hippocampus was investigated by intracellular recordings from the somata and dendrites of CA1 pyramidal cells in urethane-anesthetized rats. The recorded neurons were ve...

متن کامل

Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus.

Cholinergic and GABAergic neurons projecting to the hippocampus fire with specific phase relations to theta rhythm oscillations in the electroencephalogram (EEG). To determine if this phasic input has an impact on synaptic transmission within the hippocampus, we recorded evoked population excitatory postsynaptic potential (EPSPs) during different phases of theta rhythm by using techniques simil...

متن کامل

Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area

Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra c...

متن کامل

Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons.

Hippocampal theta (5-10 Hz) and gamma (35-85 Hz) oscillations depend on an inhibitory network of GABAergic interneurons. However, the lack of methods for direct and cell-type-specific interference with inhibition has prevented better insights that help link synaptic and cellular properties with network function. Here, we generated genetically modified mice (PV-Deltagamma(2)) in which synaptic i...

متن کامل

Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit

Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2001